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SIPSAT patients are expensive and impact outcomes
(Short In-patient Stay & Ambulance Transfer)

SIPSATs / Qtr
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1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1029903/pdf/ar
chdisch00567-0015.pdf
2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950432/
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ML does not provide actionable insights
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ML needs stakeholder buy in to create value

Lots of work.
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Don’t cherry-pick data

16 tables / 1M rows / 1861 fields > 1 table /52K rows / 362 fields

Patient 1

Patient 2 | 2

Patient 3

Patient 4

[l TargetEpisode Non-target Episode
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Hypothesis 1

“Machine learning trained on existing TRAK (PAS) data creates

models that lead to actionable insights.”

Hypothesis 2

“Such models can provide realtime decision support in a clinical

setting to improve KPI trends.”
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Hypothesis 1: A model leads to actionable insights

False
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Knowing model features doesn’t build trust

E1: Discharged to $22K savings / quarter
ward not
elsewhere E9: particular
described family doctor
MRADM_DischClassif_DR|39|E1
\ PAPER_FamilyDoctor_DR|2023|E9
EO: Current ward PAADM_CurrentWard_DR|88|EQ
PAADM_AdmCateg_DR|29|EQ
> PAPMI_DOB:-:PAADM_UpdateDate|E9 \l

EO: planned
| multi-day stay

E9: Proxy for age 100s more fields
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Understanding model decisions doesn’t build trust

At least 3 episodes in timeline

Prediction probabilities 0 I
PAADM_AdmDate E2

0 =
1 [ 0.98 PA.‘-\DM_InpatBedRoeé:

MRADM_DischClass...
0.01

TRANS_Dept DR124...
0.01

PAADM DischgDate:-...

0.01 PAADM DischgDate:- PAADM InpatBedReqDateE1

TRANS_Main Y/me...
0.01
TRANS_UpdateUser...

0.00

PAADM_AdmDate E9

0.00
PAPMI_CheckMedica...
0.00

TRANS_EndTime_Ho...
.00

Model correctly identifies
patient as SIPSAT with 98%
probability
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E1: Time between IP bed request

and first order being entered

Feature Value

PAADM AdmDatelE2 7864518937.00

PAADM InpatBedReqDate:--OEORD_DatelE1 -7872.00

E1: Admitted to ward not elsewhere
described

MRADM DischClassif DRI39.0[E1 1.00
TRANS_Dept DR|1242.Ojmezn(E1 0.12

-11160.00

E1: Health Services Centre at PDH
used for 12% of episode
transactions




Trust ultimately comes from deploying a model

%= Ambulance transfers with short IP stay rmsms

SIPSATs / Qtr m Strategy Population analytics
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Hypothesis 2: Real-time decision support

Maybe
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Our model trained using daily data is performant

Retrospective Model: $22K savings / quarter
Daily EO Model: $17K savings / quarter

Daily E1 Model: $17K savings / quarter
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Next Steps: Deploy model trained on realtime data
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Supporting slides
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LIME example - Correctly identified as NOT SIPSAT

Prediction probabilities

o [ : 00
1000 ]

E3: Time between the episode being created

and the patient being put on a wait list

0
PAADM_CreateDate:-...

0.0}

OEORD_Time_HourO...
0.01

MRADM_BaseWIES...
0.09
PAPMI_UserUpdate|70...
0.09
MRCID_AgeCheckT...

PAADM_AdmDateE2
0.02
PAPMI_MedicareEx...
0.01
PAADM_AdmDate:-:...
0.01

TRANS_Main Yime...
0.01

P.A.PI\H_I\IedicareEpr A
0.00

0.00
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PAADM CreateDate:~-WL_DateOfList[E3

PAADM AdmDatelE2

PAPMI_ MedicareExpDate:- PAADM_EstimDischargeDate{ES
PAADM AdmDate:-PAADM CreateDatelE1

OEORD_Time HourOfDay[E7

MRADM BaseWIES{num[E7
PAPMI_UserUpdate|7046.0[E8
AgeCheckTypelDR|2.0jsum[E6

At least 3 episodesin
timeline

-51533.00 %
7854744360.00

0.0
-1897173.00

E8: Temporal difference
between Medicare expiry
date an Estimated
Discharge Date

15.00
0.00

AN

E1: Temporal difference

E7: An order was created at
3pm

between the episode
creation and patient
admission




Our cohort: Old, admitted late, cardiac
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